2,055 research outputs found

    Effect of vegetation treatment and water stress on evapotranspiration in bioretention systems

    Get PDF
    EvapotranspirationStormwater managementUrban green infrastructureBioretentionHydrological performanceSustainable Drainage Systems (SuDS

    A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila

    No full text
    In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increase their effort over repeated trials in the absence of reward suggesting that need dominates negative experience. We further show that odor tracking is regulated by two mushroom body output neurons (MBONs) connecting the MB to the lateral horn. These MBONs, together with dopaminergic neurons and Dop1R2 signaling, control behavioral persistence. Conversely, an octopaminergic neuron, VPM4, which directly innervates one of the MBONs, acts as a brake on odor tracking by connecting feeding and olfaction. Together, our data suggest a function for the MB in internal state-dependent expression of behavior that can be suppressed by external inputs conveying a competing behavioral drive

    A conserved Polϵ binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1

    Get PDF
    Defects during chromosome replication in eukaryotes activate a signaling pathway called the S-phase checkpoint, which produces a multifaceted response that preserves genome integrity at stalled DNA replication forks. Work with budding yeast showed that the ‘alternative clamp loader’ known as Ctf18-RFC acts by an unknown mechanism to activate the checkpoint kinase Rad53, which then mediates much of the checkpoint response. Here we show that budding yeast Ctf18-RFC associates with DNA polymerase epsilon, via an evolutionarily conserved ‘Pol ϵ binding module’ in Ctf18-RFC that is produced by interaction of the carboxyl terminus of Ctf18 with the Ctf8 and Dcc1 subunits. Mutations at the end of Ctf18 disrupt the integrity of the Pol ϵ binding module and block the S-phase checkpoint pathway, downstream of the Mec1 kinase that is the budding yeast orthologue of mammalian ATR. Similar defects in checkpoint activation are produced by mutations that displace Pol ϵ from the replisome. These findings indicate that the association of Ctf18-RFC with Pol ϵ at defective replication forks is a key step in activation of the S-phase checkpoint

    Can the Solar Wind be Driven by Magnetic Reconnection in the Sun's Magnetic Carpet?

    Full text link
    The physical processes that heat the solar corona and accelerate the solar wind remain unknown after many years of study. Some have suggested that the wind is driven by waves and turbulence in open magnetic flux tubes, and others have suggested that plasma is injected into the open tubes by magnetic reconnection with closed loops. In order to test the latter idea, we developed Monte Carlo simulations of the photospheric "magnetic carpet" and extrapolated the time-varying coronal field. These models were constructed for a range of different magnetic flux imbalance ratios. Completely balanced models represent quiet regions on the Sun and source regions of slow solar wind streams. Highly imbalanced models represent coronal holes and source regions of fast wind streams. The models agree with observed emergence rates, surface flux densities, and number distributions of magnetic elements. Despite having no imposed supergranular motions, a realistic network of magnetic "funnels" appeared spontaneously. We computed the rate at which closed field lines open up (i.e., recycling times for open flux), and we estimated the energy flux released in reconnection events involving the opening up of closed flux tubes. For quiet regions and mixed-polarity coronal holes, these energy fluxes were found to be much lower than required to accelerate the solar wind. For the most imbalanced coronal holes, the energy fluxes may be large enough to power the solar wind, but the recycling times are far longer than the time it takes the solar wind to accelerate into the low corona. Thus, it is unlikely that either the slow or fast solar wind is driven by reconnection and loop-opening processes in the magnetic carpet.Comment: 25 pages (emulateapj style), 13 figures, ApJ, in pres

    Switching the Interpenetration of Confined Asymmetric Polymer Brushes

    Get PDF
    The interpenetration of two polymer brushes on approaching flat surfaces has been investigated. When compacting polymer brushes with an asymmetric charge on each surface, one neutral and the other weakly charged, we find that the brush interpenetration becomes a parameter that can be controlled by the pH of the hydrating solution. The switching between high and low degrees of brush interpenetration was investigated with numerical self-consistent field theory (nSCF) and experimentally using a sample environment which combines neutron reflectometry with a surface force type apparatus. Initially, a pair of uncharged poly(ethylene oxide), PEO, brushes are examined, where one of the brushes is deuterated to distinguish it from a hydrogenous counterpart. We find in both nSCF and these experiments that there is no significant overlap between the brushes as both compact into polymer blocks with little hydration. However, when a weak polyelectrolyte poly(2-(dimethylamino)ethyl methacrylate), PDMAEMA, brush is confined against a deuterated neutral PEO brush and the pH of the hydrating solution is below the polycation’s pKa of 7.5, then the presence of charged groups on the PDMAEMA allows significant interpenetration to occur between the two polymer brushes on contact. This interpenetration remains once the polymer brushes dehydrate due to the confining pressure that is applied. Raising the pH to a value above the pKa, removes the charges from the polyelectrolyte brush resulting in little to no interpenetration between the two brushes. Therefore, by simply adjusting the pH of the hydrating solution the interpenetration state between polymer brush pairs can be switched when one brush is a weak polyelectrolyte. Since polymer brushes are widely investigated and used to reduce friction between solid surfaces, this effect may have significant implications in the design and operation of polymer brushes with controllable friction properties

    Galaxy Zoo 1 : Data Release of Morphological Classifications for nearly 900,000 galaxies

    Get PDF
    Morphology is a powerful indicator of a galaxy's dynamical and merger history. It is strongly correlated with many physical parameters, including mass, star formation history and the distribution of mass. The Galaxy Zoo project collected simple morphological classifications of nearly 900,000 galaxies drawn from the Sloan Digital Sky Survey, contributed by hundreds of thousands of volunteers. This large number of classifications allows us to exclude classifier error, and measure the influence of subtle biases inherent in morphological classification. This paper presents the data collected by the project, alongside measures of classification accuracy and bias. The data are now publicly available and full catalogues can be downloaded in electronic format from http://data.galaxyzoo.org.Comment: Accepted by MNRAS, 14 pages. Updated to match final version; problem with table 7 header fixed. Full tables available at http://data.galaxyzoo.or
    • …
    corecore